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We apply the tube model to a specific problem in polymer melt dynamics - -  the rheology of star polymers 
as an additive to a monodisperse linear matrix. We find that the tube dilation picture of constraint release 
may be applied to the relaxation of the star fraction. There are four qualitatively different cases depending 
on the relative concentrations and relaxation times of the two fractions. Terminal relaxation times and 
relaxation spectra are calculated for each case. A comparison with experimental data is made in the case 
of dilute stars in a matrix of linear chains. This supports the theoretical prediction of a modified Rouse 
relaxation such that G(t)~ t-3/2. 
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I N T R O D U C T I O N  

Some recent attention has been given to the question of 
star-branched polymers as rheological additives ~ to 
melts, particularly in the entangled regime. This is of 
interest in a number of processing procedures, for which 
branched polymers may act very efficiently as rheological 
modifiers. Another application arises in the case of a 
weakly crosslinked melt of linear polymers, in which very 
few molecules contain more than one branch point and 
nearly every crosslink forms the branch point of a star. 
Such a system is also of scientific interest because 
theoretical models applicable to the molecular dynamics 
of entangled branched polymers are now at hand TM. 
The core idea in any entangled melt of concentrated 
solution is that the topological constraints on a molecule 
may be treated in an averaged way as a confining tube 
of radius a, centred on the molecule's contour 5. The value 
of a is set by the plateau modulus of the melt. A molecule 
is free to move along the tube ('reptation') but is confined 
laterally. 

The model is very successful in predicting the properties 
of monodisperse linear polymers. In some cases there is 
accurate quantitative agreement, such as the short-time 
non-linear response to a step-strain (the so-called 
'damping function'). In the other cases the predictions of 
the basic model are more qualitative, such as the form 
of the time-dependent relaxation (near single exponential) 
and the molecular-weight dependence of the viscosity 
( theoret ical ly  M 3 and experimentally neare r  M3"4). 
Recent work on the contribution of the Rouse-like motion 
of the chain ends ~5, ignored in the original treatment, 
indicates that this feature is likely to be the source of the 
latter discrepancies but understanding is still lacking in 
the case of only marginally entangled polymers. 

The theory also needs extension whenever there are 
present chain segments whose configurational relaxations 
occur on different time-scales. The chief problem in 
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understanding the rheology of these systems lies in the 
large 'constraint-release' mechanisms which affect both 
the linear and branched fractions. Now a segment of 
chain can relax either by motion along its own tube or 
by the relaxation of some of the topological constraints 
from neighbouring molecules. Constraint-release in 
blends of linear polymers is complex 6-1° and far from 
understood, but can sometimes be simplified in the case 
of branched polymers where 'tube dilation' is the 
dominant process ~ 1-14. The reason for the simplification 
is that the relaxation times of different parts of a star 
molecule are very well separated. We review the physical 
assumptions of this model next, then apply it to a model 
case of monodisperse star polymers in a monodisperse 
linear matrix, for which the simplifying features of the 
star melt will survive for regimes where the star fraction 
is important. 

TUBE DILATION 

This limiting case of constraint-release seeks a self- 
consistent calculation of tube dynamics by treating all 
polymer chain segments which relax on time-scales faster 
than a given time t as effective solvent fraction for any 
dynamics which occurs on the t time-scale 11-14. It finds 
mathematical expression in some hierarchical equation 
which expresses the dynamics of slower processes in terms 
of faster ones, and involving a renormalized effective 
concentration. The method is thus ideally suited to the 
tube dynamics of branched polymers which exhibit a 
hierarchy of relaxation time-scales from the fast free ends 
of the chains to the slow segments near the branch points. 

Stress relaxation proceeds via sequential arm retraction 
(Figure 1). This causes fluctuations in the entangled path 
length which are equivalent to the Brownian diffusion of 
a particle in a potential well whose minimum rests at the 
mean entangled path length. Thus the segments along a 
star arm of molecular weight M, of contour co-ordinate 



0 

Figure 1 Contour co-ordinate s for an entangled star polymer in an 
effective tube. Disentanglement proceeds via rare retractions such as 
the one shown by the light line 

S (0 < S < Ma) have relaxation times z(s) given by: 

dz(s) = z(s)o~ C,etEz(s)] (1) 
ds 

where ct= 1 5 M , / 4 M  e and Me is the bare entanglement 
molecular weight of the polymer tt 14. The equation 
describes thermally activated diffusion of the particle 
(representing the free end of the polymer) in the arc-length 
co-ordinate, s, along its tube. The effective potential U(s) 
working against this diffusion is quadratic to a good 
approximation. The right-hand side of equation (1) is 
proportional to dU/ds,  so is linear in s. The last term of 
equation (1), C~et(z), is the effective concentration of 
unrelaxed segments, or the concentration of an effective 
network for the sequential relaxation. It describes the 
accelerating effect on the dynamics of slow segments due 
to their dilution by faster ones and acts on the effective 
potential U(s) to make it dependent on the time-scale of 
the motion. The effective concentration appears to the 
first power as a consequence of either the ansatz that 
entanglements are two-body interactions of chains or of 
the experimental finding that the effective entanglement 
molecular weight varies as the inverse first power of 
concentration in concentrated polymer solutions. This is 
equivalent to a variation in tube diameter such that 
a ~ C - 1 / 2  

The concentration of unrelaxed segments proceeds 
stochastically as a function of time but must be consistent 
with the relaxation times calculated in equation (1). 
Taking an ensemble average over all fluctuating arms 
gives: 

fo" C.et(t) = e-'/~(~) ds (2) 

which completes the system of tube dilation equations 
for monodisperse branched polymers. As they stand they 
present a non-linear integral equation, so do not give 
any obvious advantage over other methods of treating 
constraint-release which consider the detail of the motion 
of the effective tube 6 to. However, the expression for C,~ t 
may be further approximated using the fact that for ct >> 1 
(the interesting limit of well entangled arms) the integrand 
of equation (2), e -t/,¢`), is very close to a step-function in 
s for any time t, so that C . e t ( t ) ~ [ 1 - s ( t ) / M  ]. 

Equations (1) and (2) together constitute an approxi- 
mation to the full diffusion equation for the free end valid 
in the limit of large ct, and correctly captures the 
exponential dependence of relaxation times on arc 
co-ordinate. The longest relaxation time, for instance, 
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t(Ms) is to exp(~/6) where t o is the relaxation time for 
length fluctuations and is of the order of the Rouse time 
for the free polymer. 

The hierarchical dynamics are supplemented by an 
assumption for the calculation of the stress due to the 
dynamic network. This must be consistent with the 
scheme for the dynamics. The usual assumption due to 
Marrucci 6 is to take: 

G(t) = Go[Cnet(t)] ~' (3) 

where 7 is an exponent describing the effect of dilution 
on the plateau modulus, G o. The value of y in good 
solvents is understood from scaling arguments to be 9/4, 
which is in good accord with experiments. In 0 solvents 
and concentrated solutions the experimental value is also 
close to two, and Colby and Rubinstein 16 claim evidence 
in support of a scaling value of 7/3. In this work we leave 
open the exact choice of ~, and express results in terms 
of the effective network. 

The theoretical treatment described above accounts 
very successfully for the linear frequency-dependent 
rheology of monodisperse star polymers. Ball and 
McLeish using this procedure predicted G(t) to within 
a factor of 2 over 10 decades in frequency for 
the polystyrenes of Pearson and Helfand such that 
ct > 20, requiring only that the fundamental monomeric 
relaxation time be fitted from the data t t- t,~. This was an 
important step for, although the previous theoretical 
treatments of star polymers in melts without constraint- 
release 6 to successfully accounted for the exponential 
dependence of the viscosity and for the approximate form 
of the relaxation function, they enormously overpredicted 
the relaxation times themselves (and the consequent 
viscosities) by up to a factor of 10 6. This factor disappears 
when constraint-release is accounted for self-consistently. 
It is, however, important to stress that the tube dilation 
concept is only applicable when the star arms are 
well entangled. For arm lengths of molecular weight 
less than Me, the viscosity of a melt of star polymers is 
actually less than that of the linear polymer of equal 
molecular weight: without entanglements the star relaxes 
via Rouse-like modes for which the terminal time is 
dominated by the longest connected path through the 
polymer. As in the case of linear polymers, the nature 
of the dynamics in the presence of weak entanglement is 
much less well understood than the cases of strong (tube 
model) or absent (Rouse model) entanglement. The 
present calculation which admits a time-scale-dependent 
entanglement density can be expected to perform as well 
as it does for pure star melts at very long and short times 
(when these limits apply) but for the same reason will 
not define the cross-over between entangled and non- 
entangled dynamics. 

Tube dilation and constraint-release 
It is important to stress that the validity of assuming 

that the relaxation is governed by a dilated tube is correct 
only because of the very slow chain dynamics of branched 
polymers. It might be thought that the picture is equally 
correct for a bimodal blend of two linear polymers, when 
the slow dynamics of the long chains exist in dilated tubes 
such that the short chains constitute effective solvent. 
However, Viovy, Rubinstein and Colby have shown that 
this is not always the case v'8'1°. By ascribing Rouse-like 
dynamics to the tube itself and allowing the tube of 
short-lifetime constraints to reptate within the larger tube 
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of long-lifetime constraints, they find a regime of 
behaviour which mimics a tube-dilation approach with 
a renormalized friction constant (a regime they term 
'tube reptation') only under an additional constraint on 
the molecular weight of the short chains Ms that 
(Ms~Me) 3 < 1/q~ where q~ is the volume fraction of long 
chains. The physical effect underlying this constraint is 
that outside it a faster relaxation process is available to 
the long chains: namely reptation within their immediate 
tubes. It is conjectured that such a regime does not exist 
for branched polymers because in this case relaxation in 
a dilated tube is exponentially faster while friction 
constants still renormalize as a power law of length-scale. 
This will be discussed in greater detail elsewhere. 

STAR-LINEAR BLENDS 

In this paper we concern ourselves with the problem of 
stress-relaxation in a melt containing just two fractions: 
a linear flexible polymer of molecular weight ML 
and a star-branched homopolymer whose arms are of 
molecular weight M a. If we denote the volume fraction 
of the star polymer by q~, the volume fraction of the linear 
polymer becomes (1-q~). This very simple system still 
has three effective parameters {ML/Me, MJM~, tk} and 
is the simplest branched analogue of the much-studied 
bimodal linear blend 6-1°. At this level we make the 
additional assumption of compatibility between the 
linear and branched polymers. This is justified in the case 
of homopolymers from the observed miscibility of 
branched and linear polystyrenes 1 and, in the case of less 
well controlled polymerization, the blending of high- and 
low-density polyethylene without segregation ~7. The 
assumption of compatibility is an important simplification 
because it permits the use of a unique mean-field for the 
topological constraints on both species. It will generally 
break down in the case of heterogeneous systems in which 
the species have distinct chemistries or in the important 
case of star polymers with arms of differing chemistries. 
This theory is therefore applicable to the technology of 
rheological modification in homopolymers, but not to 
the task of compatibilization of blends. In the latter case, 
an explicit account of the microstructure is required. 

Three main cases exist depending on whether the star 
polymers are entangled among themselves or not 
(Cs> <tiC*) and on whether the terminal time of 
the star-arm relaxation T~ is longer or shorter than 
the reptation time of the linear fraction (T~p> <T~). 
Experiment indicates that in order to be entangled 
overlap must be high, not simply of order one, hence the 
factor fl which is large in melts. The criterion on the 
concentration determines the nature of the long-time 
dynamics: whether entanglement is effective or not. The 
second criterion determines which fraction of the melt is 
responsible for the long-time behaviour. Of course when 
all polymers are well entangled the molecular weight of 
the linear fraction must be very high in order to ensure 
that it is the last to relax, but in principle both limits are 
accessible. We consider the cases in turn. 

Case 1: C~> <tiC*; T,ep>T s 
When the reptation time is long enough then 

the branched polymers will be constrained by an 
entanglement network throughout their relaxation. The 
effective network concentration now contains two 
contributions from the linear and star fractions, and may 

be written: 

f? C.et(t)= ~b e-'/~t~ds+(1-~))e-Ur,op (4) 

As far as the star arms are concerned, the linear fraction 
is behaving as a fixed network, so using equation (4) in 
the dynamical equation (1) interpolates between the limits 
of a star melt treated by Ball and McLeish la, and the star 
in a network treated by Pearson and Helfand 4. Using 
the step-function approximation for the integrand along 
the star arm in equation (4) allows us to calculate the set 
of contour relaxation times z(s) by solving equation (1): 

~(s) = ~o exp L~ \ M /  - ~ \ ~ /  _1 (5) 

We see that the relaxation times are decreasing functions 
of the star fraction, reflecting the highly co-operative 
nature of the constraint-release when branching is 
prevalent. Varying the star fraction therefore affects both 
the level of the stress attained when all star polymers 
have relaxed (as this is carried by the linear chains only) 
and also the rapidity with which this intermediate plateau 
is attained. Figure 2 shows numerical calculations of the 
quantity Cnet(t ) (recall that G(t),,~ [Cnet(t)-] 2) for the case 
of star polymers such that ~ = 20 (Ma ~ 5Me) in a matrix 
of very long linear chains (ML g 3000Me). Even in this 
case of enormously disparate molecular weights, the 
relaxation time-scales are clearly not widely separated 
for higher concentrations of the star fraction. 

Tube dilation must also affect the linear fraction and 
the reptation time itself will not be constant as tk alone 
is varied. The effect of diluting the entanglement network 
seen by the linear chains is to shorten the primitive path 
length L along which they must diffuse to relax 
their orientation. Since T~p ~ L 3 and L= (ML/M,)a, the 
concentration dependence of T~,p is predicted to be linear. 
This is in accord with the findings for the 'tube reptation' 
regime of Viovy 7. The shorter reptation times resulting 
from a more dilute linear matrix are clear from 
the long-time behaviour of the relaxation curves in 
Fioure 2. The condition on the reptation time that the 
relaxation at long times be reptation of the linear chains 
therefore implies a joint condition on q~ and ML such 
that (ML/Me) > 1/(1 - q~). 

Log ! 

\ 
_,.oo 
-I.25 \ 

Figure 2 Network relaxation for case 1 when e = 2 0  and T~ep/zo=e 8 
and three values of 4~ 
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Case 2: C, > PC*; Tlep < T, 
This is a more realistic regime than the previous case 

because the molecular weight of the linear fraction is not 
as high as the previous case would demand when the 
star chains are well entangled. The relaxation of the star 
arms is still always entangled so that (MJM,)> l/4, but 
occurs in two stages. Initially the linear chains contribute 
to the entanglement network and the arm fluctuation is 
retarded relative to the case of pure star polymer (we still 
imagine that M,>>M, so that the fluctuating dynamics 
of the star arms is faster than that of the linear chains). 
Then on some intermediate time-scale, when a significant 
portion of the star arms has relaxed, the linear chains 
relax via reptation. Following this, the arms continue to 
relax via breathing, but are now accelerated by the dilated 
effective tubes. A log-log plot of the stress relaxation will 
show two regions characterized by the logarithmic decay 
typical of entangled branched polymers separated by a 
relatively rapid step, since at the level of this treatment, 
the reptation time behaves like a single characteristic 
time-scale for all the segments of the linear chains. Indeed 
for increasingly large c(, the approximation by which we 
take the contribution of the linear chains to the effective 
network to decay as a step function becomes increasingly 
accurate, and is useful because it allows explicit 
calculation of the relaxation times as in case 1. The 
dynamical equation becomes: 

d$)=r(s), s C$ 1-s +(I-&O[T,,,-t(s)] (6) 
CM.){ ( M) i 

where O(t) is the Heaviside step function. The solution is 
expressed more simply in terms of an intermediate 
parameter, s_, which we define as the contour label of 
the monomer on the star arm whose relaxation time 
coincides with the reptation time of the linear chain. The 
solution for the relaxation times then becomes: 

where the matching condition of continuity of the 
function r(s) supplies the boundary condition for the 
second region. There is an interesting feature of this 
regime apart from the unusual relaxation function in that 
the terminal time z(M), and hence the viscosity, may be 
either an increasing or decreasing function of the star 
fraction, depending on the value of s,,~. (Explicit 
expressions for the terminal times are given in Table 1.) 
When the linear chains act for long enough as an effective 

matrix z(M) decreases with 4, the transition occurring at 
S rep = M/3. 

In Figure 3 we show numerical results for a well 
entangled star of (M/M,) z 20 in the presence of a faster 
fraction of linear chains. In the case illustrated we have 
kept sreP constant, though in practice both s_, and Trep 
are weak functions of 4 if molecular weights are kept 
constant. This is due to the mild renormalization of Trep 
as the effective contribution of the star arms to the 
entanglement network changes. Both &, and s,,~ may 
be found as functions of the bare (monodisperse melt) 
value of the reptation time, TrepO, by demanding the 
self-consistent condition: 

rep = TepO ( ) 1 - I$2 = z&J 

Ignoring the renormalization of qep still demands a cubic 
be solved for s,_, but the solution has a useful expansion 
in inverse powers of the large parameter CI which we quote: 

(9) 

In most relevant cases the reptation time will be 
significantly shorter than the terminal time for the star 
arms in which case this expansion is adequate. There are 
two contributions to the second term in equation (9) 
because the effects of renormalization of Z& and the 
cubic correction to log r(s) enter at the same order of a. 
The renormalization of Z&, itself has a similar expansion 
in inverse powers of cx, and in this regime works to prolong 
the relaxation of the linear chains as the fraction of 
branched material is increased. 

Log f 

-1.5.. 

Log c(r) 

Figure 3 Network relaxation for case 2 when a = 60 and s_, = 0.3 and 
three values of 4 

Table 1 Dependence of the terminal relaxation times on molecular weights of the star and linear fractions for each case referred to in the text. 
The parameter s,,~ is dependent on the molecular weights via equation (9) 

c,<c* c,>c* 

TIep>T, *exp[z(l-7)] 

M 
--<NZ 
M, 

MZ 
T 

( ) 
rep - 

M, 

Texp[z(l--$)] 
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Case 3: C, < PC*; Trep CT, 
This case is the only remaining distinct one as the 

overlap or non-overlap of the star fraction is only effective 
when the linear fraction is effectively solvent at long times. 
The initial relaxation of the star polymers proceeds via 
entangled path fluctuation from the free ends as before, 
but at long times the stars are effectively dilute so must 
relax via Rouse modes with an effective local friction 
provided by the viscoelastic linear matrix. The novel 
feature of such a Rouse relaxation however is that the 
initial condition on the orientational distribution of the 
star arms (which is imposed at Trep when free relaxation 
can begin) is such that no stress is carried by segments 
such that s-cs,,~. If we approximate the modes on the 
star polymer by linear Rouse modes: 

Xp=; s,” co@;)?(s) ds (10) 

we may find their initial amplitudes X, from the condition 
that segments are affinely deformed with the shear up to 
s < S,,$ 

i 

R,(s) = Us)l,, + Y&Ml,, 

R,(s) = R,(s)l,, 
(11) 

Here y is the magnitude of the shear, which is taken to 
be in the x-y plane. The magnitude of the shear stress 
under a step shear strain is easily calculated as a sum 
over these modes, which decay independently and 
exponentially: 

and 

a,,(r) a 1 P~(X,&)X&)> 
P 

(12) 

~Gf,&P-,,(0> = - 7pz --_(x,,@&w 
ROIW 

The initial mode amplitudes determine the form of the 
relaxation spectrum. These are calculated from equations 
(10) and (11) in terms of equilibrium chain conformations: 

The angular brackets denote an equilibrium average. In 
this case the averaged quantity is the second moment of 
the local chain extension. It is directly evaluated from 
the Wiener measure for configurations of Gaussian 
chains? as b2/3 6(s-s’), where b is the Kuhn step length, 
thus allowing direct integration of equation (13) to find: 

~Xp&VXpy(0)> = & 
[ 
W - srcp) - $ sin 

2P7w - %ep) 
N 

1 

(14) 

We observe straight away that for small s,_, we 
recover the familiar l/p2 amplitudes for the Rouse 
decay. However, for s,,~ +N (the case in which most 
of the stress has decayed by path-length fluctuation 
before free Rouse motion can begin) we find that all 
modes have approximately the same amplitude of 
2b2(N -s,,_)~/N~ up to the mode characterizing the 
length of stressed primitive path [pz N/(N -s,,,)]. This 

is easy to understand for the short portion of stressed 
path length approximates to a delta function on these 
length-scales and the mode amplitudes will follow the 
form of the Fourier transform of a delta function, which 
is constant in mode index. Slower modes are more heavily 
weighted than in the standard case. The effect of this is 
to alter the power-law decay of the stress which one 
obtains from summing the Rouse modes5 from t-‘12 to 
t-3’2 for the initial stages of the free relaxation. This is 
easily seen from writing an integral approximation to the 
expression for the stress decay in equation (12): 

s 

a, 

s 

m 
cr_,(t)- p2e-pzt dt- t-3’2 .z2e-r2dz (15) 

0 0 

We note that the experiments of Watenabe et al.’ on 
polystyrene blends fall into this class and that their 
frequency-dependent moduli at low frequency do indeed 
show a power-law form between the reptation times of 
the linear polymer and the terminal time of the star 
fraction which is consistent with this result. We show in 
Figure 4 some of the data of Watenabe et al., this time 
in the frequency domain together with the theory for the 
terminal zone alone for (N - s&/N = 0.1. The fraction of 
star polymer was l/60, the molecular weight of the linear 
component 315 000 and the star-arm molecular weight 
400 000. 

A final, distinctly different regime exists within the case 
of self-dilute stars when the star-arm molecular weight 
is so long that hydrodynamic (‘Zimm’) relaxation is faster 
than the Rouse-like relaxation discussed above. This must 
occur since the Zimm time increases as M,312 while the 
Rouse time grows as Mz. The cross-over molecular weight 
can be estimated by equating the two times under the 
following assumptions: 

1. The Rouse time for a segment of molecular weight M, 
in the melt is r. 

2. The renormalized Rouse time for the star arm is 
(M,/MJ2r(ML/MJ3. This is equivalent to giving an 
elemental Rouse hopping time to the tube equal to 
the reptation time of the linear chains. 

3. The renormalized Zimm time of the star arm is the 
time it takes to diffuse hydrodynamically through its 
own radius of gyration - R&/kT with the viscosity 
q- kTv(A4L/A4,)z(A4L/A4,)3. Here v is the number 

Figure 4 G’(o) for a star-linear blend of case 3. Data of Watenabe 
et al. (a) compared to free-Rouse (upper curve) and our predictions of 
‘anomalous Rouse’ (lower curve). We have taken +/A4 =0.9 and fitted 
the terminal zone of the linear component so that only the low-frequency 
star-dominated response remains. To the left of the G’ axis the slope 
is 2 (final relaxation); to the right it is 3/2 (anomalous Rouse relaxation) 
for a decade of frequency before approaching a plateau 
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density of chains so that kTv(ML/Me)  is an estimate 
of the plateau modulus of the melt. 

These assumptions together imply that if N a > N  2 
then the final relaxation occurs hydrodynamically. We 
note that this is also the criterion that solvent chains of 
molecular weight Me screen the long star arms effectively 
from their own excluded-volume interactions. Longer star 
arms will tend to swell. 

D I S C U S S I O N  A N D  C O N C L U S I O N S  

We may conclude from the above that the system 
comprising a homopolymer  blend of linear and star 
polymers is amenable to a tube-dilation analysis when 
both components  are well entangled. Novel rheological 
behaviour emerges even at the level of linear response as 
different regions of the molecular weight/concentration 
phase diagram are explored. An illustration of the variety 
of behaviour is shown in Table 1, which gives the 
characteristic terminal times for relaxation of the star 
fraction as a function of molecular weight and volume 
fraction of star polymer. This summarizes the discussion 
above. 

A related question of relevance to applications 
of this system is the effect of polydispersity. Of 
course the star-linear blend itself is an example of 
strong polydispersity of relaxat ion times. Such strong 
polydispersity can also be generated in the case of 
linear melts if the molecular weight range is very large 
indeed. When reptation times in such a blend vary 
over decades the tube-dilation concept can be invoked, 
as shown recently for weak power-law polydispersity TM. 
In this limit it is straightforward to see that the 
modification of the present approach to include poly- 
dispersity would replace the network of the monodisperse 
linear chains fixed for t <  T~ep with a dilating tube 
corresponding to the low molecular weight fractions of 
linear polymer. This will accelerate the relaxation of the 
branched component  over the monodisperse case and 
remove sharp features from the relaxation spectrum, such 
as the step at the terminal time of the linear fraction. 
Conversely the presence of a high molecular weight tail 
provides a weak but long-lived contribution to the 
modulus for which entanglements are not important  
providing that the tube dilates fast enough. It turns out 1 s 
that the condition for this is that the high molecular 
weight tail for the distribution has a distribution P(M)  
which falls away more rapidly than M-2 .  In the case of 
longer tails to the distribution the persistence of effective 
entanglements for both linear and branched species 
may lead to relaxation times well beyond those usually 
measured in the laboratory.  

Experiments on well characterized branched/linear 
blends are still lacking in most of the regimes of 
interest, though should be possible in the near future. 
The case of self-dilute stars is so far in agreement with 
theory. Of  particular interest is case 2 in which all the 
phenomena of reptation, accelerated relaxation of star 
arms and a terminal unrelaxed phase are expected. 
These should be clear from the linear stress-relaxation 
spectrum. For  this case the star and linear fractions 
should be roughly equally admixed. This case is 
also a useful tool for studying the intermediate dynamics 
of weakly entangled polymers. Rheological experiments 
on polymers with lower entanglement molecular weight, 
so further into the entangled regime, such as poly- 
isoprenes, would also be welcomed. Extensions of this 
work would apply to blends of more complex branched 
architectures in linear melts. Molecules with more than 
one branch point per molecule have markedly different 
non-linear rheology from that of non-branched or singly 
branched molecules, and might be effective as rheological 
modifiers. 
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